This article was downloaded by:

On: 17 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

International Journal of Environmental Analytical Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713640455

Determination of Major and Trace Elements in Mushroom, Plant and Soil Samples Collected from Japanese Forests

S. Yoshida^a; Y. Muramatsu^a

^a Environmental and Toxicological Sciences Research Group, National Institute of Radiological Sciences, Ibaraki, Japan

To cite this Article Yoshida, S. and Muramatsu, Y.(1997) 'Determination of Major and Trace Elements in Mushroom, Plant and Soil Samples Collected from Japanese Forests', International Journal of Environmental Analytical Chemistry, 67: 1, 49-58

To link to this Article: DOI: 10.1080/03067319708031393 URL: http://dx.doi.org/10.1080/03067319708031393

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

DETERMINATION OF MAJOR AND TRACE ELEMENTS IN MUSHROOM, PLANT AND SOIL SAMPLES COLLECTED FROM JAPANESE FORESTS

S. YOSHIDA* and Y. MURAMATSU

Environmental and Toxicological Sciences Research Group, National Institute of Radiological Sciences, 3609 Isozaki, Hitachinaka-shi, Ibaraki, 311–1202 Japan

(Received 23 July, 1996; In final form 2 October, 1996)

Inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) were used to measure many major and trace elements in plant, mushroom and soil samples collected in Japanese forests. Sample preparation and analytical conditions were investigated to set up a simple routine procedure for measuring a large range of elements. Fifty elements were determined for soil samples. For plant and mushroom samples, 25 elements were determined.

Concentrations of some trace elements such as Zn, Pb, Cd, Bi, Sn and Sb in forest soils tended to be the highest in the surface soil layer, indicating the importance of atmospheric deposition on the total contents in the soils of these elements. In comparison with the element contents of plants, the mushroom contents could be characterized by low Mg, Ca, Sr and Ba amounts. Transfer factors (TFs) were estimated from the ratio of "concentration in plant or mushroom on dry weight basis" to "concentration in the surface soil on dry weight basis". The TFs of lanthanide elements, Th and U were very low in all plant and mushroom samples. Mushrooms tended to accumulate Cu, Zn, Rb, Cd and Cs. The TFs of Cs for mushrooms were one or two orders higher than those for other plants growing in the same forest. This result was consistent with the high concentrations of radiocesium in mushrooms reported by researchers in many countries.

Keywords: ICP-MS; trace elements; mushroom; plant; soil; forest

INTRODUCTION

Measurements of major and trace elements in biological and soil samples within a forest are needed to expand our knowledge of the elemental composition of the forest ecosystem and to predict migrations and effects of chemical elements.

^{*} Corresponding author. Fax: +81-29-2659883. E-mail: s_yoshid@nirs.go.jp.

Most research efforts concerning the elemental migrations in forest ecosystems have concentrated on the major nutrient elements (e.g. K, Ca, Mg, P)^[1] and some heavy metals (e.g. Cu, Zn, Pb, Cd)^[2-4]. Although the lanthanide elements in plants have also been measured in some forests^[5-6], the data were limited. Therefore, the distribution and transfer of many trace elements are still unknown.

Analytical methods commonly used in the determination of trace elements are neutron activation analysis (NAA), atomic absorption spectrometry (AAS), X-ray fluorescence (XRF) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Recently, inductively coupled plasma-mass spectrometry (ICP-MS) has been used for accurate and precise determination of trace elements in a variety of materials including environmental samples^[7]. Due to its low detection limits, analytical speed, relative lack of chemical interferences, and multi-element capability, the method has been applied to more than 50 elements in environmental samples^[8-12].

In the present study, ICP-MS was used to measure many trace elements in mushroom, plant and soil samples collected from Japanese forests. Major elements were measured using ICP-AES. Sample preparation and analytical conditions were investigated to set up a simple routine procedure for measuring a large range of elements. Distribution of the trace elements in the forests and specific accumulation of some trace elements by plants and mushrooms were discussed based on the analytical results.

MATERIALS AND METHODS

Plant samples were collected from a pine forest in Tokai, Ibaraki in September 1990. Mushroom samples were collected in the same forest from 1989 to 1991. Soils at different depths were sampled in the same forest and another forest at Tsukuba, Ibaraki for comparison. Plant and mushroom samples were freeze-dried and pulverized with a cooking blender. Soil samples were air dried, sieved (1 mm) and ground to powders.

Mushroom and plant (0.2–1 g) and soil (0.1 g) samples were digested in TeflonTM PFA pressure decomposition vessels or TeflonTM beakers with acids (HNO₃, HF and HClO₄). A microwave digester (CEM, MDS–2000) or hot plate (at about 150°C) was used for heating the samples. After digestion, the samples were evaporated to dryness. Then, the residues were dissolved in 1–2% HNO₃ to yield the sample solutions.

Trace elements (Cs, Sr, Zn, Cu, Cd, La, Ce, Th, U, etc.) were measured by ICP-MS (Yokogawa PMS-2000). The instrumental parameters are summarized

in Table I. Under these conditions, the oxide formation level of Ce was found to be 0.5–2% (CeO⁺/Ce⁺). Internal standards such as Rh, In, and Bi were used to compensate for changes in analytical signals during the operation. Major elements, Na, Mg, Al, P, K, Ca, Ti, Mn and Fe, were analyzed by ICP-AES. Standard solutions were prepared from SPEX Multi-Element Plasma Standards (SPEX Industries Inc., XSTC-1, 7, 8 and 13) and used to get calibration curves. Several standard reference materials were used to validate the analytical procedure. A rock reference sample, JB-1 (basalt) issued by the Geological Survey of Japan, was used for soil analysis. The details of soil analysis were described in Yoshida et al, [12]. Tomato Leaves (1573a) and Orchard Leaves (1571) issued by the National Institute of Standards & Technology, were used for plant and mushroom analyses.

RESULTS AND DISCUSSION

Validation of Analytical Procedure

Low background counts and the high sensitivity of ICP-MS provided extremely low detection limits for most elements (ng/l level in sample solution). Good agreements between the certified and measured values were observed for standard reference materials (see Figure 1). In the case of JB-1, errors of measured values were less than 10% of the certified values^[13] for 36 elements, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ga, Sr, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd. Tb. Dv. Er. Tm. Yb. Lu, Hf. Pb. Bi, Th and U. The errors were less than 20% for 12 elements, Mn, Li, Be, Zn, Y, Cd, Sn, Sb, Cs, Ho, Ta and W. And the errors were less than 30% for Rb and Mo. Precisions calculated using three independent runs were typically better than 5% RSD (relative standard deviation) for most elements. For the plant reference samples, elements which are certified are limited. Errors were less than 30% of the certified or additional information values for 25 elements, Na, Mg, Al, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Cd, Cs, Ba, La, Ce, Sm, Gd, Pb, Th and U. For most elements, precisions for plant and mushroom samples were worse than those for soil samples due to high concentrations of matrix elements in sample solutions. Precisions calculated using three independent runs of Tomato Leaves were better than 5% RSD for Na, Mg, Al, P, Ca, Mn, Fe, Ba, La, Sm and Pb, 5-10% RSD for K, Cr, Cu, Zn, Rb, Sr, Cd and U, and 10-20% RSD for Co, Cs, Ce, Gd and Th. Precision for Ni was 24%. The high precision for Ni (Ni-60) might be attributable to an interference with CaO molecule.

TABLE I Instrumental parameters for the ICP-MS

Plasma	
Frequency (MHz)	27.12
RF power (kW)	1.20
Argon flow (L/min)	
Plasma	14.00
Auxiliary	1.20
Carrier	0.83
Sampling distance (mm)	4.80
Sample uptake rate (mL/min)	0.80
Data Acquisition	
Mode	Peak jumping mode
No. points per peak	3
No. sweeps	20
Dwell time per point (s)	0.1-0.5
No. replicates	3

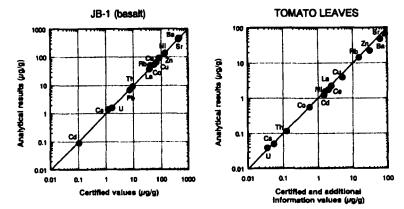


FIGURE 1 Binary plots of analytical results of selected trace elements, Co, Ni, Cu, Zn, Rb, Sr, Cd, Cs, Ba, La, Ce, Pb, Th and U versus their certified and additional information values for basalt (JB-1) and tomato leaves samples. Solid line: slope unity

Analytical Results of Soils

Analytical results of soil samples collected from a pine forest (Sand-dune Regosol) in Tokai, Ibaraki and a deciduous broad-leaved forest (Andosol) in Tsukuba, Ibaraki are shown in Table II. Fifty elements were determined for soil samples. Vertical profiles of the elements differed among elements and soil types. Concentrations of Zn, Pb, Cd, Bi, Sn and Sb in the Andosol are highest in the F+L or 0-5 cm soil layer and lower in the deeper soil layers. These elements are known to be accumulated in anthropogenic particulates. These observations indicate that a significant portion of these elements in the soil is derived from atmos-

pheric deposition. The accumulation of Zn, Pb and Cd in the surface forest soils has also been observed in many forests contaminated by atmospheric pollution^[3,14,15]. The concentrations of Al, Fe, Ti, Li, V, Cr, Ni, Cu, lanthanide elements, Th and U etc. were high in the deeper soil layers. These elements were mainly supplied from the bed rock or the original material of the soil, i.e. volcanic ash for the Andosol. The concentrations of most elements in the Sand-dune Regosol were lower than those in the Andosol, except for Na, Mg, K, Ca, Rb, Sr, Nb, Cd, Sb and Ba. In the Sand-dune Regosol, only Cd had its highest concentration in the surface soil layer (0–2 cm). The concentrations of the other elements did not change with depth or had a broad peak in the subsurface layers (2–10 cm). Sandy soils do not sorb these trace elements well because of the lack of any sorption site such as organic materials and sesquioxides of Al and Fe. Therefore, no accumulations of most trace elements in the surface layer were observed.

Analytical Results of Plants and Mushrooms

Analytical results of plants and mushrooms collected from the pine forest in Tokai, Ibaraki for 25 elements are summarized in Table III. The highest concentration in the mushrooms was found for K followed by P, Mg, Na and Ca. On the other hand, the highest concentration was observed for Ca in many plant samples. In comparison with the elemental content of plants, the contents of mushrooms could be characterized by low Mg, Ca, Sr and Ba concentrations.

In order to estimate the accumulation of each element by plants and mush-rooms, transfer factors (TFs) from soil to plants and mushrooms were calculated by using the element concentrations in the surface soil (average of 0–2 cm and 2–5 cm layers) collected in the forest. It was defined as the ratio of "concentration in plant or mushroom on dry weight basis" to "concentration in the surface soil on dry weight basis". The calculated TFs for 14 trace elements, Co, Ni, Cu, Zn, Rb, Sr, Cd, Cs, Ba, La, Ce, Pb, Th and U, are summarized in Table IV.

The TFs of Co, Ba, La, Ce, Pb, Th and U were very low for all plants and mushrooms. On the other hand, those of Cu, Zn, Rb and Cd were relatively high. Mushrooms tended to accumulate Cu, Zn, Rb, Cd and Cs, although the TFs varied within the species. The TFs of Cs for mushrooms were one or two orders of magnitude higher than those for plants growing in the same forest. High concentrations of radiocesium discharged through nuclear weapons testing and nuclear accidents have been reported in many countries^[16–20]. The high TFs for stable Cs obtained in this study indicated that mushrooms are important Cs accumulators and radiocesium is taken up from soils together with stable Cs.

Downloaded At: 19:30 17 January 2011

TABLE II Concentration of major and trace elements in soils collected from two different forests (µg/g, dry wt)

	ŀ		Tokai (Sand-dune Regosol	tune Regoso	(10	i			Tsukuba	Tsukuba (Andosol)		
Code Depth (cm)	FR-23 L	FR-24 0-2	FR-25 2-5	FR-26 5-10	FR-27 10-20	FR-28 20-30	0-12 L	0-13 F+H	0-14	0-15 10-20	0-16 20-30	0-17 40-55
Na	416	. –		17000	—	17500	150	4030	5540	6420	6730	4370
Mg	410	5180		9460	5930	8200	1040	3670	09/9	8770	8460	5770
. IA	893	44400		51700	50400	20600	2200	47700	79200	90100	89200	131000
×	614	18400		17500 -	21400	19100	096	2470	3690	3700	3600	5550
C ₂	2050	11400		14900	13700	16300	1640	2970	3400	3510	3590	1520
ц		1840		3950	2260	2960	120	4440	2800	0189	0269	8330
Mn	86	564		749	206	613	310	920	1090	1130	1120	1170
н	407	15400		24300	17200	21300	1410	39200	55600	65700	00829	82200
<u>:</u>	0.32	12.2		13.5	12.5	13.2	3 5	16.0	20.5	22.4	23.3	32.5
Be	0.022	0.88		1.02	0.94	96.0	200	08.0	1.07	1.15	1.17	1.65
Sc	0.15	3.10		6.79	3.66	5.01	99	16.9	22.9	27.0	27.1	33.1
>	1.62	36.3		58.8	44.1	53.0	7.11	193	252	294	300	354
ర	1.53	14.6		34.1	10.6	16.5	872	51.2	64.6	72.8	72.8	89.5
ට	0.43	4.07		6.40	4.77	5.39	<u>10</u>	19.5	25.1	26.7	30.0	35.0
ïZ	0.79	6.34		7.65	5.91	7.00	435	27.2	33.9	38.0	38.5	45.2
రె	1.62	7.69		5.40	7.27	4.48	989	70.9	87.2	9.96	98.4	122
Zn	9.51	42.9		49.4	35.1	38.6	40.4	133	133	117	102	118
Сa	0.26	8.75		10.6	10.1	76.6	15 0	15.1	19.7	22.4	23.0	28.0
Rb	1.75	42.7		43.8	45.3	46.4	371	28.3	37.7	36.7	36.2	62.0
Sr	10.8	78.0		127	94.8	109	25.9	72.4	87.7	94.0	1.96	64.9
¥	0.15	3.17		7.35	4.51	5.91	නු	13.6	18.6	21.3	21.3	24.8
Zr	0.48	24.0		22.1	22.5	24.3	58 2	72.6	94.7	110	111	139
S.	0.099	4.08		99.9	5.16	5.03	P	4.60	5.07	6.47	6.26	8.99
Mo	0.044	0.44	0.21	0.24	1.66	0.18	0.17	1.32	1.52	1.48	1.43	1.93

Downloaded At: 19:30 17 January 2011

TABLE II Continued

Code FF Depth (cm)		1		Under (Samu-anne megosor)					Commit manuer	, a a G		
	FR-23	FR-24 0-2	FR-25 2-5	FR-26 5-10	FR-27 10-20	FR-28 20-30	0-12 L	0-13 F+H	0-14 0-5	O-15 10-20	0-16 20-30	0-17 40-55
ρĎ	0.12	0.24	0.12	0.13	0.10	0.10	0.07	0.27	0.29	0.23	0.18	0.12
	0.11	1.19	1.19	1.24	1.02	1.02	0.50	3.73	2.86	2.46	1.98	2.41
	0.050	1.33	0.78	0.78	0.50	0.39	0.23	1.03	0.95	0.78	0.61	0.77
	0.047	1.28	1.28	1.33	1.05	1.23	0.12	2.71	3.52	3.62	3.73	5.33
	8.50	241	381	286	245	263	19.3	140	691	174	181	861
	0.23	2.32	9.55	13.9	2.94	2.94	06:0	10.9	13.9	15.1	15.7	16.2
	0.46	5.90	9.61	30.6	7.11	7.96	1.28	23.1	29.8	32.0	32.7	43.2
	0.056	0.64	2.03	3.00	0.78	0.83	0.24	2.95	3.85	4.19	4.34	5.01
	0.19	2.41	7.28	10.3	2.97	3.30	0.80	12.0	15.5	16.9	17.6	20.7
	0.042	0.58	1.44	1.99	0.74	0.87	0.22	2.74	3.61	3.95	4.08	4.94
	0.011	0.27	0.49	0.47	0.29	0.34	0.11	0.83	1.10	1.19	1.22	1.44
	0.048	0.61	1.48	1.86	0.84	1.02	0.23	2.91	3.75	4.16	4.29	5.13
	0.005	60.0	0.20	0.24	0.11	0.14	0.09	0.51	89.0	0.72	0.73	0.88
	0.026	0.55	1.14	1.29	0.73	06.0	0.19	2.64	3.49	3.84	3.95	4.88
	0.005	0.12	0.24	0.26	0.15	0.19	80.0	0.59	0.80	98.0	0.87	1.05
	0.015	0.35	0.72	0.77	0.48	0.59	0.12	1.60	2.17	2.41	2.49	2.99
	0.002	90:0	0.11	0.11	0.07	0.09	90.0	0.28	0.38	0.40	0.39	0.48
	0.015	0.38	0.74	0.78	0.52	69.0	0.11	1.52	2.06	2.30	2.33	2.88
	0.002	90.0	0.11	0.12	0.08	0.10	0.05	0.25	0.36	0.38	0.37	0.46
	0.016	1.98	1.77	1.77	1.78	1.80	0.12	2.14	2.76	3.12	3.17	4.00
	0.010	0.48	0.50	89.0	0.53	0.55	0.03	96:0	1.74~	2.25	1.67	2.45
	0.033	0.51	0.55	0.55	0.55	0.49	0.19	1.17	1.31	1.22	1.12	1.54
	1.56	12.2	19.0	12.7	8.75	8.47	3.27	26.7	27.6	19.2	14.1	15.6
Bi							0.03	0.39	0.44	0.34	0.27	0.31
£	0.094	1.14	3.66	5.23	1.36	1.77	0.21	3.65	4.69	4.62	4.58	6.49
ם	0.024	0.18	0.51	0.34	0.17	0.20	0.02	0.88	1.15	1.13	1.10	1.49

TABLE III Concentration of major and trace elements in plants and mushrooms collected from a pine forest in Tokai, Ibaraki (µg/g, dry wt)

		Tree leaves				Shrub					Mushroom		
	Pinus	Pinus	Morus		Vitex	_	Miscanthus	Ophi-	Suillus	_	Russula	Amanita	Tricholoma
	thunbergii	thunbergii	bombycis		rotundi-		sinensis	uo8odo	granu-	hatsudake	mariae	panther-	flavo-
	*()	(C+1&2)		tinctoria	folia			japonicus	latus			ina	virens
Code	TL-2a	TL-2b	TL-4	GR-5	GR-6	GR-8	GR-9	GR-10	MR-7	MR-24	MR-93	MR-151	MR-211
Na	93	331		713	1850		892	0/9	308		1490	167	1782
Mg	1300	1100		2660	1300		1200	2290	1100		926	682	1400
, 4	293	206		7.9	188		62	254	310		323	218	943
Д	984	269		1540	1790		809	1590	6470		0069	4920	4300
×	0069	4250		8890	8830	٠,	3960	17900	32900		37600	28700	51500
ద్ద	2574	6440		58300	25900	٠,	5820	6700	186		207	001	979
Mn	223	269		167	33		137	197	22		30	10	35
æ	41	93		85	228		109	265	175		180	93	452
ບັ	0.46	09:0		0.58	1.13		8.27	1.35	4.08		1.00	1.66	0.88
ပိ	0.10	0.18		0.17	0.25		0.10	0.099	0.42		0.20	0.072	0.17
ž	0.97	0.56		1.45	0.75		3.31	0.92	1.07		1.08	9.02	0.84
ű	2.81	2.37		9.48	3.05		2.37	8.80	27.8		40.4	22.7	23.9
Zu	18.8	30.7		13.6	9.28		18.0	37.4	77.0		6.69	74.3	216
Rb	8.24	2.96		14.9	7.94		3.98	15.9	101		46.6	73.2	254
Sr	13.7	27.3		151	99.3		38.2	42.3	1.48		1.89	1.07	5.59
ర్	0.34	0.40		0.18	0.042		0.039	0.21	0.28		4.32	68.6	1.55
ర	0.024	0.017		0.10	0.037		0.022	0.052	2.39		0.34	0.31	20.3
Ba	2.72	6:39		13.5	8.19		8.68	15.0	2.97		2.02	2.02	8.02
፫	0.020	0.082		92.0	0.22		0.077	0.15	0.10		0.043	0.019	0.16
ප	0.029	0.10		0.34	0.23		0.069	0.23	0.20		0.090	0.034	0.32
Sm	0.005	0.010		0.17	0.032		0.007	0.019	0.016		0.00	0.003	0.030
В	0.005	0.008		0.028	0.015		0.005	0.016	0.015		0.00	0.003	0.030
£	0.39	0.82		0.56	1.28		0.85	1.48	0.60		1.42	0.21	1.52
Ę	0.003	0.014		9000	0.036		0.008	0.028	0.026		0.013	0.005	0.042
n	0.001	0.004		0.002	0.007		0.002	0.00	0.004		0.012	0.007	0.010

* current leaves † one and two year old leaves

Downloaded At: 19:30 17 January 2011

TABLE IV Transfer factors of trace elements from soil to plants and mushrooms

Sample	Code	Co	Ni	Си	Zn	Rb	Sr	СД	Cs	Ba	La	రి	Pb	Th	U
Tree leaves	Ē			3	5	1,0	5	:	3	8	6		8		
	11-7a	0.022	CI.D	0.41	0.47	CI.D	71.0	7	0.019	25.5	0.003	0.007	0.02	0.00	0.003
Pinus thunbergii (C + 1&2)†	TL-2b	0.039	0.0	0.34	9.0	0.05	0.24	2.2	0.013	0.021	0.014	0.008	0.053	0.00	0.012
Morus bombycis	1 ,4	0.032	0.23	0.99	0.42	0.19	0.97	0.5	0.037	0.049	0.077	0.029	0.170	0.017	0.034
mean	_	0.031	0.16	0.58	0.51	0.13	0.44	1.5	0.023	0.026	0.031	0.013	0.082	0.008	0.016
Shrub															
Indigofera pseudo-tinctoria	GR-5	0.037	0.23	1.38	0.30	0.27	1.35	1.0	0.078	0.043	0.128	0.026	0.036	0.003	900.0
Vitex rotundifolia	GR-6	0.053	0.12	0.44	0.21	0.15	68.0	0.2	0.029	0.026	0.037	0.018	0.082	0.015	0.021
Oenothera lamarckiana	GR-8	0.029	0.15	92.0	0.55	0.59	1.01	6.0	0.087	0.044	0.069	0.021	0.080	0.008	0.019
Miscanthus sinensis	GR-9	0.022	0.52	0.34	0.40	0.07	0.34	0.2	0.017	0.028	0.013	0.005	0.054	0.003	0.007
Ophiopogon japonicus	GR-10	0.021	0.14	1.28	0.83	0.29	0.38	1.2	0.041	0.048	0.026	0.018	0.095	0.012	0.026
mear	-	0.033	0.23	0.84	0.46	0.28	0.79	0.7	0.051	0.038	0.055	0.018	0.069	0.008	0.016
Mushroom															
Suillus granulatus	MR-7	0.091	0.17	4.0	1.7	1.9	0.013	1.6	1.86	0.010	0.018	0.016	0.039	0.011	0.011
Lactarious hatsudake	MR-24	0.026	0.17	1.0	5.6	1.8	0.010	9.9	1.74	900.0	0.008	0.007	0.021	0.004	0.022
Russula mariae	MR-93	0.043	0.17	5.9	1.5	6.0	0.017	24.0	0.27	9000	0.007	0.007	0.091	0.005	0.034
Amanita pantherina	MR-151	0.016	0.10	3.3	1.6	1.4	0.010	55.0	0.24	0.007	0.003	0.003	0.013	0.002	0.00
Tricholoma flavovirens	MR-211	0.037	0.13	3.5	8.8	4.7	0.050	9.8	15.8	0.026	0.027	0.025	0.098	0.017	0.031
mear	_	0.043	0.15	3.5	2.4	2.1	0.020	19.1	3.99	0.011	0.013	0.012	0.052	0.008	0.024

^{*} current leaves † one and two year old leaves

The location of roots and mycelia is one of the important factors controlling trace element concentrations in plants and mushrooms. In this study, the surface soil (0–5 cm) was used for the calculation of TFs because most roots and mycelia grow in this layer. However, there are some variations in the location due to the species. For accurate determination of TFs, the appropriate soil layer should be used in accordance with the placing of the roots and mycelia.

Multi-element capability of ICP-MS can provide information on the distribution of many trace elements in forest ecosystems. The TFs estimated in this study tended to be lower than those estimated from radiotracer experiments for vegetables. Since the bulk soil samples were analyzed in this study, the TFs of elements combined with minerals might be underestimated. The *in situ* TFs provided in this study can be used for the estimation of species specific accumulation and plant-availability of the elements.

Acknowledgements

Mr. K. Ishida, Mr. T. Ohuchi and Ms. T. Yasuda are acknowledged for their help in sample preparation and measurements.

References

- [1] G. E. Likens, F. H. Bormann, R. S. Pierce, J. S. Eaton and N. M. Johnson, *Biogeochemistry* of a *Forested Ecosystem*, (Springer-Verlag, New York., 1977).
- [2] H. Heinrichs and R. Mayer, J. Environ. Qual., 6, 402-407 (1977).
- [3] H. Heinrichs and R. Mayer, J. Environ. Qual., 9, 111-118 (1980).
- [4] B. Bergkvist, L. Folkeson and D. Berggren, Water, Air, and Soil Pollut., 47, 217-286 (1989).
- [5] B. Markert, Phytochemistry, 26, 3167-3170 (1987).
- [6] B. Markert and Z. D. Li, Sci. Total Environ., 103, 27-35 (1991).
- [7] J. W. Mclaren, At. Spectrosc., 13, 81-88 (1992).
- [8] B. Casetta, A. Giaretta and G. Mezzacasa, At. Spectrosc., 11, 222-227 (1990).
- [9] S. Yamasaki and Y. Tamura, Commun. in Soil Sci. Plant Anal., 21, 2017-2028 (1990).
- [10] R. Alaimo and P. Censi, At. Spectrosc., 13, 113-117 (1992).
- [11] G. Schonberg, Geostandards Newsletter, 17, 81-97 (1993).
- [12] S. Yoshida, Y. Muramatsu, K. Tagami and S. Uchida, Intern. J. Environ. Anal. Chem., 63, 195-206 (1996).
- [13] A. Ando, H. Kamioka, S. Terashima and S. Itoh, Geochem. J., 23, 143-148 (1989).
- [14] M. H. Martin, E. M. Duncan and P. J. Coughtrey, Environ. Pollut. Ser. B, 3, 147-157 (1982).
- [15] G. R. Parker, W. W. McFee and J. M. Kelly, J. Environ. Qual., 7, 337-342 (1978).
- [16] K. Haselwandter, M. Berreck and P. Brunner, Trans. Br. Mycol. Soc., 90, 171-174 (1988).
- [17] G. Heinrich, Radiat. Environ. Biophys., 31, 39-49 (1992).
- [18] S. Yoshida and Y. Muramatsu, Sci. Total Environ., 157, 197-205 (1994).
- [19] S. Yoshida, Y. Muramatsu and M. Ogawa, J. Environ. Radioactivity, 22, 141-154 (1994).
- [20] S. Yoshida and Y. Muramatsu, Environ. Sci., 7, 63-70 (1994).